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Abstract—Robot soccer as a complex mixed cooperative-
competitive task presents many challenges to multi-agent rein-
forcement learning (MARL), such as assigning long-term credits
and effective exploration in high-dimensional and continuous
state-action spaces. We propose Prediction-based Hierarchical
Reinforcement Learning (P-HRL) for robot soccer. P-HRL con-
sists of a coach for soccer tactics and a robot controller for robot
motion control. To comprehensively evaluate the performance
of P-HRL, we design various key performance indicators for
robot soccer such as ball possession rate. Experimental results
demonstrate that P-HRL has a better performance than the
baseline MATD3, with 52% win rate, 22% draw rate, and 26%
loss rate.

Index Terms—Multi-agent Reinforcement Learning, Hierarchi-
cal Reinforcement Learning, Robot Soccer

I. INTRODUCTION

Robot soccer has been developed to facilitate deploying
multi-agent systems (MAS) from virtual environments to the
real world [1]–[4]. In robot soccer, MAS controls a team of
robots to cooperate and score goals. Several leagues on robot
soccer have been successfully organized in recent years, such
as RoboCup, IEEE Very Small Size Soccer (IEEE VSSS).
Many research topics based on robot soccer have received
extensive attention, such as the Internet of Things(IoT) [5]
and path planning [6], [7].

Multi-agent reinforcement learning (MARL) has achieved
outstanding success on cooperative problems [8]. MARL con-
trols the actions of multiple agents to maximize the return by
continuously interacting with the environment. MARL enables
end-to-end autonomous learning and can continuously improve
its performance without reliance on domain knowledge [9].
The development of a MARL-based approach in robot soccer
has the potential to outperform other non-reinforcement learn-
ing approaches [10]. However, robot soccer, as a cooperative-
competitive task that requires controlling robots in the real
world, brings more challenges to MARL. We identify the
following challenges to MARL in robot soccer.

First, the problem of assigning long-term credit to multiple
robots makes it difficult for MARL to learn to collaborate
in robot soccer. Agents learn optimal policies by rewards
interacting with the environment [11]. However, scoring is a

sparse reward, and it is difficult to identify the contribution of
each player to the goal. Previous work [12], [13] addressed
the problem of reward sparsity by reward shaping. However,
reward shaping still struggles to address the long-term credit
assignment problem. The contribution of players to goals
is difficult to measure and is associated with many factors
such as the position, direction, speed of the ball and players.
These factors increase the hyperparameter space of the reward
function weights, making reward shaping difficult to achieve.

Second, the inherent high-dimensional and continuous state-
action space of robot soccer increases the complexity of
training. MARL faces the curse of dimensionality in robot
soccer [14]: the dimensionality of the state-action space grows
exponentially with the degrees of freedom and the number of
robots. Consequently, it is hard for agents to effectively explore
the environment and learn optimal policies.

Inspired by human soccer, where coaches choose tactics for
players on the field, the paper designs a coach for robot soccer.
The coach guides agents at the tactical level to help MARL
devise different strategies for various opponents and on-field
situations. Hierarchical reinforcement learning (HRL) provides
a framework for improving each agent through coach. HRL
learns the same task at multiple time scales, and the policies
at each time scale jointly determine the behaviors of agents
[15].

In the paper, we propose Prediction-based Hierarchical
Reinforcement Learning (P-HRL), which tackles the problem
of long-term credit assignment and exploration problem of
high-dimensional continuous state-action. P-HRL consists of
two hierarchical parts: a coach for soccer tactics and a robot
controller for robot motion control. The coach decomposes
the soccer game into a series of subtasks, while the robot
controllers control robot to achieve these tasks. For the first
challenge, P-HRL provides different subtasks and correspond-
ing rewards for each robot. For the second challenge, the
hierarchical structure allows the coach to focus only on
learning soccer tactics and the robot controllers are dedicated
to the subtasks. This division of labor enables both the coach
and robot controllers to train within a simplified, lower-
dimensional space.



We evaluate the P-HRL by simulating robot soccer games
under IEEE VSSS rules [16]. The results show that P-HRL has
better performance than the state-of-the-art baseline MATD3.
In matches against the baseline, P-HRL has 52% win rate,
22% draw rate and 26% loss rate. P-HRL showed better co-
operation with a 70.25% possession rate compared to 17.14%
for baseline.

II. PREDICTION-BASED HIERARCHICAL REINFORCEMENT
LEARNING (P-HRL)

Figure 1 shows the workflow of P-HRL. The key idea of
P-HRL is to design a coach to guide the robot controller at the
level of soccer tactics. We design a team policy in the coach
and guided the robot controller to execute it.

A. Problem Formalization

The entire process of robot soccer can be formalized as
a decentralized partially observable Markov Decision Process
(Dec-POMDP). Specifically, it is formally defined as a tuple
< A,S,U ,O, P,R, γ >, where A = {1, 2, . . . , n} denotes
the set of agents (i.e., robots), S denotes the state space,
U denotes the action space, P denotes the state-transition
function, R denotes the reward function and γ denotes the
discount factor. At each time step t, each agent selects an
action ui

t ∈ U following the policy πi (u | oi,t) to form a
joint action ut = (u1,t, u2,t, ..., un,t). In the following paper,
we refer to the agent’s policy πi as the individual policy, in
parallel with the team policy πT

i in coach. Note that each
agent can only receive partial observable observations oi,t ∈ O
instead of the state st ∈ S. Each agent then receives the
reward rt = R (st,ut) and the environment follows the state-
transition function P (s | st,ut) into the next state st+1. The
goal of each agent is to maximize the discounted accumulated
rewards E

[∑T
k=t γ

k−trk

]
, where T is the maximum time step

of a game.

B. Team policy in Coach

Inspired by human soccer, we aim to design a coach,
which guides agents at the tactical level to adapt to different
opponents and field situations. Formally, the coach is defined
as a team policy πT (gi, r

g
i | oi) where gi ∈ G is a subtask

for each robot and rgi is a subtask reward. Each subtask is
started and terminated using an initiation condition Ig and a
termination condition βg , respectively.

A basic principle of soccer tactics is to maintain possession
of the ball because the team that has possession of the ball
has the opportunity to attack and score, otherwise it can only
passively defend. Thus, we divide subtasks into two types G ={
gA, gD

}
, where gA is offensive subtask and gD is defensive

subtask. When our team has possession of the ball, the coach
starts an offensive subtask; when the opponent gets possession
of the ball, the coach starts a defensive subtask. We use a
ball possession recognizer f bp : oi → {0, 1} to determine
whether a robot has possession of the ball. It is determined
by f bp (oi) = 1 [∥posi − posb∥ < ϵ], where 1 [·] denotes the

indicator function, posi and posb denote the position vectors
of the robot and the ball, respectively, and ϵ is a threshold.

The offensive subtask aims to secure possession of the
ball and score a goal, while the defensive subtask aims to
get possession of the ball to prevent the opponent’s attack.
In the offense subtask, the coach encourages the ball-control
robots (i.e., robots that satisfy f bp (oi) = 1) to score a goal
and encourages the remaining robots (i.e., robots that satisfy
f bp (oi) = 0) to explore the high-reward area to accelerate the
convergence of individual strategies. In the defensive subtask,
the coach encourages all robots to intercept the ball to get
possession of the ball. The subtask reward rgi is defined as
encouraging the robot to go to the target position:

rgi =
posi − posg
∥posi − posg∥

· vi,

posg =


posb if g = gA and f bp (oi) = 1

posz if g = gA and f bp (oi) = 0

posb if g = gD

(1)

where vi is the robot speed vector and posz denotes the
centroid of the high reward region, which is defined in the next
subsection. Table I shows the definition of initiation conditions
Ig and termination conditions βg . Note that after Tp time step,
the offensive subtask is restarted if our robots have possession
of the ball.

TABLE I
DEFINITION OF INITIATION AND TERMINATION CONDITIONS

Offensive
subtask gA

Defensive
subtask gD

Initiation
condition Ig

∃oi s.t. fbp (oi) = 1 ∀oi s.t. fbp (oi) = 0

Termination
condition βg

(1) ∀oi s.t. fbp (oi) = 0
(2) After Tp time step. ∃oi s.t. fbp (oi) = 1

C. High-reward Area Prediction

We determine high-reward areas by predicting the ball
position, because the reward function in robot soccer is directly
correlated with the ball position. However, the complexity of
observation presents a challenge for soccer position prediction.
The observation contains three types of data: data related to the
home team (i.e. our robots), data related to the away team (i.e.
the opponent robots), and data related to the ball. In games, the
position of the soccer is determined by the actions of players
in both teams. A single network structure cannot effectively
model the data under observation because the policy of the
home player and the policy of the away player are mutually
independent. Thus, we propose a soccer position prediction
network (SPPN), which is a Mixture of Experts Network [17]
and consists of the following three components:

Expert network: To effectively solve the problem of data
independence in the observation, we use three expert networks
in SPPN. Each expert focused on modeling only one type of



Fig. 1. The workflow of P-HRL. At each time step, the coach receives observation and starts (or continues) a subtask. If it is a new offensive subtask, the
coach calculates the reward based on the predicted area by SPPN. In SPPN, the observation of the home team ohti , away team oatI and ball obi are input
separately to different expert networks. Then, the coach calculates the corresponding subtask reward based on the subtask. In the robot controller, each agent
outputs an action based on observation and reward.

data. We divided the data into three types and input them into
expert networks respectively.

Gating network: Gating network is used to gate the output
of expert networks. This allows modeling of the complex
relationship between the three types of data in the observation.

Fusion network: Fusion network is used to map the output
features of the gating network with the prediction results.

We divide the soccer field into several equal rectangular
areas, and SPPN is used to predict the area where the ball will
be located after Tp time steps. Formally, given an observation
oi =

(
ohti , oati , ob

)
, where ohti , oati and obi is the part of

the observation related to the home team players, away team
players and ball, respectively. The prediction area of SPPN
can be formulated as follow:

posz = h

(
3∑

k=1

g (oi) fk
(
oki
))

,

where g (oi) = softmax (f (oi)) ,

and o1i = ohti , o2i = oati , o3i = ob

(2)

where fi (·) is the expert network, g (·) is the gating network,
and h (·) is the fusion network.

D. Individual Policy in Robot Controller

In the robot controller, we modify MADDPG [18] to be
used in the hierarchy structure of P-HRL to learn individual
policies. The objective of each agent is to complete subtask
gi and maximize goal scores. Thus, the action-value function
Qφi

is defined as:

Qφi
(oi,t,ut) = E

[∑T
k=t γ

k−t
(
rgi,k + rk

)
| gi, oi,t,ut

]
(3)

where φi 1 denotes the neural network parameters of the action
value function. We update the action-value function Qφi

by

using the tuple (oi, gi, r
g
i ,u, r, o

′
i) in the replay buffer D∞ to

minimize the loss:

L
(
θQi
)
= E(oi,gi,rgi ,u,r,o′i)∼D1

[
(Qφi

(oi,u)− y)
2
]
,

where y = r + rgi + γQφ′
i
(o′i,u

′) |u′
j=πϕ′

j
(oj ,gj)

(4)

where Qφ′
i

is the target action-value function with network
parameter φ′

i, and each action u′
j in the joint action u′ is

given by the target individual policy πϕ′
j
(oj , gj). Using the

action-value function Qφi , the gradient of individual policy
network ϕi used to optimize the deterministic policy is shown
below:

▽J (ϕi) = Eoi,uj ̸=i,gi,r
g
i ∼D[▽ϕi

πϕi
(oi, gi) ·

▽ui
Qφi

(oi,u, gi) |ui=πϕi
(oi,gi)]

(5)

Target networks φ′
i and ϕ′

i are periodically updated by
networks φi and ϕi, respectively.

E. Training Method

To allow the robot controller to focus on completing the
subtasks assigned by the coach, P-HRL uses parallel training
of the coach and robot controller. Algorithm 1 describes the
training parallel for P-HRL.

To train the SPPN in coach and the robot controller simulta-
neously, we use two replay buffers D1 and D2. In an episode,
the coach selects a subtask g (lines 5 to 10). Then, the robot
controller controls robots to complete the subtask (lines 12).
P-HRL performs parameter updates on the robot controller
using samples from D1 (lines 13 to 14). Every Tp time step,
P-HRL stores the observation ot into replay buffer D2 for the
training of SPPN. P-HRL uses the samples in D2 to generate
the training set and labels to perform parameter updates on
the SPPN (lines 15 to 18).



Algorithm 1 Parallel training for P-HRL
Parameter: gA: Offensive subtask. gD: Defensive sub-
task.

1: Initialize replay buffer {D1,D2}, SPPN, and robot con-
troller.

2: for episode = 1 to M do
3: Reset the environment.
4: for t = 0 to Tmax−1 and not occur goal scoring do
5: if our robots are in possession. then
6: g ← gA

7: Use SPPN to predict area posz .
8: else
9: g ← gD

10: end if
11: while g dose not satisfy its termination condition

defined in table I do
12: Execute the joint action u, calculate subtask reward

rg using Eq 1, observe the external reward r and
next observation o′.

13: Store (o, g, rg,u, r, o
′) in replay buffer D1.

14: Sample mini-batches from D1 and update robot
controller by Eq. 4 and Eq. 5.

15: if t mod Tp = 0 then
16: Store observation o in replay buffer D2.
17: end if
18: Sample mini-batches from D2 and update SPPN

by cross-entropy loss function.
19: end while
20: end for
21: end for

III. EVALUATION

Our experiments use rSoccer [19], a framework for studying
RL in robot soccer. Specifically, we use the IEEE VSSS multi-
agent environment, where two teams of three wheeled robots
compete against each other.

We use rSoccer built-in algorithm as the opponent. The
hidden layer size for both the Critic and Actor networks is
set to 64, with learning rates of 1× 10−4 for each. The batch
size is 1024, the discount factor γ is 0.95 and the soft update
parameter is 0.01. The initial noise level is defined as 0.2, with
a noise decay rate of 5× 10−7, and a minimum noise level of
0.05. The expert networks and fusion network of SPPN consist
of three fully connected layers with 128 neurons. The training
lasts until convergence (about 1× 106 steps). The soccer field
is equally divided into 6 × 6 rectangular areas for predicting
high-reward areas. Tp is 30 time steps.

A. Evaluation Metrics

Apart from the direct win-loss indicator of goals scored, we
also define the following key performance indicators (KPIs)
applicable to robot soccer:

Ball Possession Rate The last robot to control the ball is
defined as having possession of the ball. We use the clock

time method to measure a team’s possession rate. For a team,
the possession rate can be calculated as the sum of the time
step that all robots on the team have possession of the ball as
a percentage of the total time step of the game. Historically,
it has been believed that higher possession is associated with
scoring advantage [20]–[22].

Number of Passes Passing is defined as the transfer of
possession from one player to another player of the same team.
The number of passes made by a team is the sum of all passes
made by all players. The number of passes is a key indicator
of the coordination between players.

Number of Interception Interception is defined as the
transfer of possession from one player to an opponent’s player.
For a team, the number of interceptions is counted as the sum
of interceptions made by all players. Frequent interceptions
mean that players are more motivated to compete for ball
possession.

B. End-to-end Performance

To evaluate the end-to-end performance, we use MATD3
[23], a popular MARL method that has been used in many
multi-agent cooperative tasks, as the baseline. In the above
environment, P-HRL controls one team of three robots and
MATD3 controls another team for soccer matches. Inspired
by Robust Adversarial Reinforcement Learning (RARL) [24],
we further train P-HRL and MATD3 in a mutual confrontation.
Based on the converged model output, two sets of agents
compete against each other and are alternately trained: In
the first stage, P-HRL is trained while keeping the MATD3
unchanged; In the next stage, P-HRL remains unchanged and
MATD3 is trained. Repeat this sequence until convergence.
The results are shown in Figure 2(e), 2(f).

For evaluation, the robots controlled by both algorithms
play 50 matches in the environment as described above, each
match lasting 2000 time steps. The results of the matches
are shown in Figure 2. Out of the total 50 matches, P-HRL
wins 26 matches, loses 13 matches and ties 11 matches.
Figure 2(a) shows that P-HRL scores more goals than MATD3.
Figure 2(b), 2(c), 2(d) show the differences in KPIs. P-HRL
outperforms MATD3 in ball possession rate and the number
of passes. P-HRL has an average of 70.25% possession and
14.32 passes per game, which is much higher than MATD3.
In terms of interception rates, no significant differences are
found.

C. Ability Against New Opponents

We investigate the performance of the model against new
opponents. This simulates that in real robot training, the
opponent’s policy is unknown during the training phase. Once
on the field, the robots are supposed to fine-tune their policies
to counter their opponents.

We use MADDPG [18], a widely used actor-critic-based
MARL algorithm, as the new opponent. Use the P-HRL and
MATD3 models trained in the previous chapter as starting
points. Let the two play against MADDPG separately to
evaluate their adaptability. Note that neither model has been



(a) Goal difference (b) KPI 1: Ball possession rate (c) KPI 2: Number of interception

(d) KPI 3: Number of passes (e) Reward in training (f) Goal difference in training

Fig. 2. (a) Results of P-HRL vs. MATD3 over 50 matches. The purple dash line represents the difference between the two (P-HRL minus MATD3). (b-d)
The histogram shows the distribution of the average KPI per match; the dashed line is the cumulative distribution function (CDF). (e-f) Change of reward
and goal difference with training. Smoothed by exponential moving average (EMA) with exponential smoothing constant K=0.95.

(a) Goal difference (b) SPPN accuracy (c) SPPN loss

Fig. 3. Online learning results of P-HRL and MATD3 against MADDPG in 10 matches. (a) shows the CDF of the goal difference (P-HRL minus MADDPG
and MATD3 minus MADDPG) in 50 matches for evaluation at 3 different checkpoints. (e-f) show the prediction accuracy and loss of the SPPN module of
P-HRL.

trained with MADDPG as the opponent, therefore, it is safe
to say that they both play against a new opponent.

A total of 50 matches are played, each lasting 2000
timesteps. MATD3 trains the entire network, while P-HRL
only trains the coach with the robot controllers unchanged. To
avoid systematic errors, we save three checkpoints: before the
start of training (match 0), halfway through training (match 5),
and at the end of training (match 10). At these checkpoints 50
matches without training are played for evaluation.

The results in Figure 3(a) show that the overall number of
goals scored is higher for P-HRL than MATD3 and slightly in-
creases at 3 checkpoints in time sequence, while no significant
trend is seen for MATD3. One possible reason for the increase

could be the convergence of SPPN. Figure 3(b), 3(c) show the
loss and accuracy of SPPN during training. It can be observed
that the loss decreases rapidly and converges approximately
within 15000 time steps. The accuracy of prediction increases
within 10 matches and reaches a maximum of 66.17% top 1
accuracy and 82.35% top 2 accuracy, which is close to the
model tested in end-to-end performance experiment with long
training time (average of 67.49% top 1 accuracy and 83.00%
top 2 accuracy over 50 matches). P-HRL has better overall
performance than MATD3 in ball possession rate, the number
of interceptions and the number of passes.



TABLE II
MATCH RESULTS FOR DIFFERENT TYPES OF COACH (VS. MATD3 IN 50

MATCHES)

Coach Team Score : Opponent Score Acc Top 1 Acc Top 2

SPPN 2.40±1.78 : 1.48 ± 1.05 0.70±0.06 0.85±0.04
NN 2.15±1.22 : 1.55± 1.31 0.59±0.06 0.80±0.05

RN 1.85±1.35 : 2.15± 1.39 0.06±0.11 0.12±0.06

D. Ablation Study

To understand the effectiveness of the coach in the overall
system, we keep the robot controllers unchanged and replaces
the SPPN with the trained neural network (NN) model and
the random nearest (RN) model, respectively. The structure of
the NN coach is similar to SPPN with only one expert in the
prediction network. The observed data are fed into the unique
expert without being segmented. The RN coach selects two
random adjacent areas of the current areas as the prediction
results. For each setting, 50 games of 2000 time steps are
performed. As shown in Table II, SPPN outperforms NN and
RN in terms of accuracy of both goal difference (average 0.92
goal difference) and prediction accuracy (average 70% top 1
accuracy and 85% top 2 accuracy).

IV. CONCLUSION

In this paper, we identify two challenges for MARL in
robot soccer: long-term credit assignment and high continuous
state-action spaces. We propose P-HRL, a hierarchical method
where a coach decomposes the game into subtasks and a robot
controller manages the robots’ motions. Experiments show that
P-HRL outperforms the baseline in goals scored, KPIs, and
adaptability to new opponents.
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